Hydration Analysis of Carbon Nanotubes/Polyamide Nanocomposite Thin Films

B. Kaiser,1,2,3 R. Cruz-Silva,1 and M. Endo1
1Global Aqua Innovation Center, Shinshu University, Nagano, Japan
2Nakatani RIES Program, Rice University, Houston, TX, USA
3Department of Physics, Bethel University, Saint Paul, MN, USA

With the ever growing population and scarcity of clean, drinkable water, filtration and desalination have become essential in daily life. Polyamide (PA) reverses osmosis (RO) membranes have become the industry standard for water desalination because of their high salt rejection, high water flux and robustness, but they have limited lifespans due to low oxidant tolerance and high fouling rate. Carbon nanotube/PA nanocomposite RO membranes have shown improved flow rate, oxidant tolerance, and lower fouling rates without compromising salt rejection. Computational and theoretical findings [1] have suggested that the carbon nanotubes act as a support structure for the PA membrane, increasing the density of the active layer. This suggests there are fewer water pockets within the membrane, which act as ion transport channels, resulting in a higher salt rejection. However, this proposed mechanism has yet to be confirmed due to a lack of experimental measurements. In this work, we examine the changes in hydration of PA membranes prepared with the addition of carbon nanotubes. Our measurements indicate the membranes containing carbon nanotubes have a lower relative water absorption, suggesting an increase in membrane density. These results are in agreement with the numerical simulations, and provide additional insight into the much needed advancements in water filtration technologies.

Hydration Analysis of Carbon Nanotube/Polyamide Nanocomposite Thin Films

Benjamin Kaiser 1,2,3 Rodolfo Cruz-Silva 1, and Morinobu Endo 1

1 Global-Aqua Innovation Center, Shimashu University, Nagano, Japan
2 Nakatani RIES Program, Rice University, Houston, TX, USA
3 Department of Physics, Bethel University, Saint Paul, MN, USA

Background

According to the World Health Organization (WHO), 663 million people still do not have access to a safe and reliable source of clean, drinkable water [1]. Reverse Osmosis (RO) Desalination

Polyamide RO Filters:
- Industry standard for desalination
- High salt rejection, high water flux, and relative robustness
- Limited life-span due to low oxidant tolerance and high fouling rate increasing cost of water filtration

Introduction

Why add Carbon Nanotube (CNT):
- Improves water flux, oxidant tolerance, anti-fouling properties, and increase salt rejection [2]
- Theoretical analysis [3]:
 - CNT act as a support structure
 - Creates more dense membrane

Purpose of this work:
- To study how the addition of multi-walled carbon nanotubes (MWCNT) affect the hydration of polyamide reverse osmosis thin films
- Develop a method of lab-scale dip coating of PA membrane on substrates
- Compare these results to computational and theoretical findings

Film Synthesis and Collection

Automated Film Collection

Interfacial Polymerization

Pure PA

PA+CNT

m-Phenylenediamine (MPD) in water (Aqueous Phase)

Benzenetricarbonyl trichloride (TMC) in hexane (Organic Phase)

Results

Relative Frequency Change of PA Membranes upon Hydration

Dry Environment

Humid Environment

PA-MWCNT

PA+CNT

PA

MZ Flange

AFM

Crystal Holder

PA membrane

PO 4

Humidity Environment

Crystal Microbalance (QCM)

Why add Carbon Nanotube (CNT):
- Improves water flux, oxidant tolerance, anti-fouling properties, and increase salt rejection [2]
- Theoretical analysis [3]:
 - CNT act as a support structure
 - Creates more dense membrane

Purpose of this work:
- To study how the addition of multi-walled carbon nanotubes (MWCNT) affect the hydration of polyamide reverse osmosis thin films
- Develop a method of lab-scale dip coating of PA membrane on substrates
- Compare these results to computational and theoretical findings

Analysis and Discussion

Relative Frequency Change of PA Membranes upon Hydration

Material

ΔF f (Hz)

Ave. ΔF f (Hz)

ΔF f /ΔF f

% Change

Pure PA

-142.5

-11.6

81.4x10^-3

4.96 ± 0.005

PA-MWCNT

-314.1

-24.3

77.1x10^-3

Conclusion

- Observed the PA+MWCNT films to have ~5.0% decrease in absorption when compared to Pure PA
- Potential evidence for computational/theoretical findings which suggest ~9.5% reduction in absorption
- Developed a automated apparatus for lab scale dip coating of PA membranes on substrates

Next Steps:
- Use other carbon nanostructures such as single and double walled CNT
- Create a more controlled humid and dry environments to help reduce experimental error and improve repeatability
- Use different concentration of MPD for different membrane thicknesses

Acknowledgements

This research project was conducted as part of the 2016 Nakatani RIES: Research & International Experiences for Students Fellowship with support from the Nakatani Foundation. For more information please see http://nakatani-ries.rice.edu/

References

References