Evaluation of Porphyrus Envelope as a Novel Drug Delivery System for Photodynamic Therapy of Prostate Cancer

Erica Lin,1,2,3 Mizuho Inai,4 Sachiko Saito,3 Norihiro Honda,3,5 and Kunio Awazu3,4,6

1Department of Applied Mathematics, Brown University, Providence, RI, U.S.A
2Nakatani RIES Program, Rice University, Houston, Texas, U.S.A.
3Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
4Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
5Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
6Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan

Prostate cancer is the second-leading cause of cancer-related death in men. Side effects from traditional therapies as well as increased treatment resistance have led to a search for more effective treatment modalities. Photodynamic therapy (PDT) has the potential to fulfill this need. PDT uses photosensitizers, light-sensitive drugs/dyes, which selectively accumulate in tumor cells. Light stimulation of the photosensitizers causes the formation of reactive oxygen species (i.e.: \(^1\text{O}_2 \)) only in tumor cells, sparing normal, healthy cells. This study evaluated porphyrus envelope as a novel therapeutic agent for PDT. Porphyrus envelope is created by incorporating the protoporphyrin IX lipid (PpIX lipid), a photosensitizer, into the hemagglutinating virus of Japan envelope (HVJ-E). HVJ-E was used because it leads to immune cell recruitment and activation of anti-tumor immunity, and thus a higher therapeutic effect in deeper tissue. Additionally, HVJ-E’s fragmented RNA induces apoptosis in cells via the RIG-I pathway. Direct cytotoxicity assays performed in this study found that HVJ-E alone and porphyrus envelope showed statistically similar decreases in cell survival rate in the absence of light stimulation/PDT. However, porphyrus envelope led to significantly lower tumor cell survival rate in the presence of light stimulation/PDT when compared to HVJ-E alone. The ideal irradiation wavelength (450 nm) was established using PpIX lipid’s absorption spectrum. Thus, porphyrus envelope represents a novel drug delivery system that can be used to more effectively treat prostate cancer as well as enhance the treatment options of other types of cancers conducive to PDT treatment, including brain and skin cancers.
EVALUATION OF PORPHYRIN ENVELOPE AS A NOVEL DRUG DELIVERY SYSTEM FOR PHOTODYNAMIC THERAPY OF PROSTATE CANCER

Erica Lin,1,2 Mizuho Inai,3 Sachiko Saito,4 Norihiro Honda,4,5 and Kunio Awazu3,4,6

1Department of Applied Mathematics, Brown University, Providence, RI, U.S.A 2Nakatani RIES Program, Rice University, Houston, Texas, U.S.A.
3Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
4Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
5Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
6Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan

Contact: e.lin@brown.edu

OBJECTIVE

To investigate whether porphyrin envelope can serve as a novel drug delivery system for photodynamic therapy of prostate cancer.

BACKGROUND

Prostate Cancer

2nd leading cause of cancer-related death in men.
Increased Treatment Resistance + Side Effects
Urgent search for more effective treatment modalities

Photodynamic Therapy (PDT)

Photodynamic therapy has shown potential to fulfill the need for better treatment options

MATERIALS & METHODS

PpIX Absorption Spectrum
Purpose: Determine ideal irradiation wavelength

PpIX Accumulation Assay
Purpose: Determine the effect of PE on the accumulation of PpIX photosensitizer

RESULTS

PpIX absorption spectrum indicates maximum absorption at 405 nm

Porphyprin Envelope (PE)

Hemagglutinating Virus of Japan (HVJ-E)
- Recruitment of immune cells and activation of anti-tumor immunity
- Higher therapeutic effect in deeper tissue
- Fragmented RNA induces cell death via RIG-I pathway

PpIX Photosensitizer
- Derived from natural heme precursor
- Fast excretion and low toxicity

DIRECT PROSTATE CANCER TOXICITY ASSAYS WITH AND WITHOUT INCORPORATION OF PDT

Purpose: Determine the cytotoxicity of PE in the absence or presence of PDT/light stimulation

RESULTS

PpIX accumulation assay shows porphyprin envelope leads to higher PpIX accumulation

CONCLUSIONS

Porphyrin envelope represents a novel drug delivery system that can be used to more effectively treat prostate cancer.

IMPACT

Experimentally Established Mechanism:
- Administration of PE to in vitro system
- Increased tumor cell death upon PDT exposure
- HVJ-E portion of PE induced cell death and led to greater accumulation of PpIX in tumor cells
- Use of PE as novel drug delivery system
- More effective prostate cancer treatment and advanced options for other cancers (e.g., brain, skin)

FUTURE RESEARCH

- Continued investigation of optimal PpIX concentration
- Minimum amount of PpIX lipid needed for creation of effective PE
- Evaluation of PpIX accumulation in healthy prostate tissue vs. prostate cancer cells
- Spheroid and in vivo studies
- Comparison to in vitro results
- Identification of optimal PE dosage for use in clinical settings

SELECTIONED REFERENCES

ACKNOWLEDGEMENTS

This research was conducted as part of the Nakatani RIES: Research & International Experience for Students program generously funded by the Nakatani Foundation. For information on the Nakatani RIES program, please visit http://nakatani-ries.rice.edu/. Further research inquiries should be directed to the first author of this poster.