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INTRODUCTION
Data Assimilation in Atmospheric Science:
• Weather prediction requires information of atmospheric conditions e.g. wind, hu-

midity, temperature, etc. at an initial forecasting time

• Data assimilation combines mathematical models and limited number of obser-
vations to estimate atmospheric conditions at an initial forecasting time and pre-
dict unknown atmospheric conditions

Challenges:
• Atmospheric conditions can only be observed at few locations in space

• The true state of the atmospheric conditions everywhere is unknown

MOTIVATION

• Explore numerical methods for
data assimilation by using simple
mathematical models

• Determine how the analysis is in-
fluenced by length of time window
and number of observation points
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Recovered Final State, t = t_f
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DATA ASSIMILATION FORMULATED AS LEAST SQUARES
Model of physics {xk}nt

k=0 ⊂ IRnx (e.g., xk = atmospheric condition at time tk) obeys

xk+1 = Fk(xk) + ξk+1, ξk ∼ N(0,Σ).

Observations {yk}nt

k=0 sample the state with H ∈ IRns×nx as rows of the identity,

yk = Hxk + ζk, ζk ∼ N(0,Γ).

Then the least squares formulation of the data assimilation problem is written,

min
x0,x1,...,xnt
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where the least squares problem is weighted by the inverses of the covariances.

DATA ASSIMILATION RESULTS

Parabolic Model (2D diffusion-advection-reaction with periodic boundary conditions):

∂

∂t
u(x1, x2, t)− ν∆u(x1, x2, t) + aT∇u(x1, x2, t) + ru(x1, x2, t) = f(x1, x2, t), (x1, x2, t) ∈ (0, 1)2 × (0, T )

u(x1, x2, 0) = u0(x1, x2), (x1, x2) ∈ (0, 1)2

u(x1, 0, t) = u(x1, 1, t),
∂

∂x1
u(x1, 0, t) =

∂

∂x1
u(x1, 1, t), (x1, t) ∈ (0, 1)× (0, T )

u(0, x2, t) = u(1, x2, t),
∂

∂x2
u(0, x2, t) =

∂

∂x2
u(1, x2, t), (x2, t) ∈ (0, 1)× (0, T )

with coefficients ν = 0.001, a = [1, 0]T ∈ IR2, r = 0, and f, u0 are given functions. 0.0 0.2 0.4 0.6 0.8
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Experiment:
• ξk and ζk are Gaussian IID and Σ = Γ = σ2I where σ = 0.001 (0.1% noise)
• Square mesh, [0, 1]2 with Finite Difference discretization, Nx = (32, 32), upwind stencil for advection

Impact of Observation Time Window on Estimation of Initial Condition:
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Rel. Error vs Time Window

Impact of Number of Observation Points on Estimation of Initial Condition:
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Initial Condition, Nobs = 36
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Initial Condition, Nobs = 64
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CONCLUSIONS
• Data assimilation can be formulated as a least squares problem.
• Increasing time window and number of observation points improves quality of

estimated initial condition.
• In this example, after some time adding measurement locations is more benefi-

cial than running longer time windows.

PROJECT SUMMARY
• Python: Numerical library (NumPy+SciPy) and object oriented programming
• Least squares formulation (Conjugate Gradient and Gauss-Newton)
• Numerical methods to solve 1D and 2D parabolic PDEs
• Adjoint-based data assimilation for linear PDE model
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