

Background - Orion Drogue Parachute

Figure: Orion parachute sequence From NASA site

- Field Tests

Figure: A drop test From NASA site Cost is about a million dollar for each test.

Figure: A wind-tunnel test From NASA site Scaling challenge due to coupling between the canopy deformation and the airflow.

Computational analysis

is expected to serve as a practical alternative.

Objective

- To improve parachute performance, including stability
- To obtain the parachute shape and flow field for fluid–structure
- interaction (FSI)^[1] of NASA's Orion spacecraft parachute

Method/Conditio - Governing Equations Compressible Navier-	ns -Stoke	es equ	uations	Nominal diameter: 23 ft	Upper Ribbons 1-16
 Discretization and Sta Compressible-flow SL 	ue	Middle Ribbons 17-35			
Table: Flight co	65.4 ft	Ī			
Mach number M	0.3	0.5	0.7		Lower Ribbons 36-52
Dynamic pressure (kPa)	1.50	4.17	8.17		
Reynolds number Re (×10 ⁷)	1.65	2.75	3.85		-
Altitude (ft)	35,000 F			Figure: Pa	arachu

Fluid and Structural Mechanics Analysis of the Orion Spacecraft Drogue Parachute in Compressible-Flow Regime

<u>Tatsuya Tanaka^{1,2}, Taro Kanai¹, Kenji Takizawa^{1,3} and Tayfun E. Tezduyar³</u> ¹Department of Modern Mechanical Engineering, Waseda University, Shinjuku, Tokyo, Japan. ²Nakatani RIES: Research & International Experiences for Students, Rice University, Houston, Texas, U.S.A. ³Department of Mechanical Engineering, Rice University, Houston, Texas, U.S.A. Tatsuya.Tanaka@tafsm.org, http://www.jp.tafsm.org/

Porosity Model for Compressible-Flow Computations

Estimate mass flow rate across the membrane^[2].

 γ : ratio of specific heat, ρ : density, p: pressure, \dot{m} : momentum, μ/D and β : porosity coefficients

Figure: Fluid-interface mesh (left) and structural mechanics mesh (right)

Figure: Parachute configuration

$$Ap_A - \rho_B p_B| = \frac{\mu}{D} |\dot{m}| + \beta |\dot{m}|^2$$

able: Mesh size					
М		(×10 ⁶)			
0.3	nn	1.01			
	ne	6.00			
0.5	nn	0.92			
	ne	5.45			
0.7	nn	0.90			
	ne	5.35			
nn: Number of nodes					
ne: Number of elements					

Figure: Fluid-volume mesh

Results from Structural Mechanics Computations

• Method for calculating the FSI starting condition

Future Directions

- Vary the altitude
- Start FSI analysis

References

[1] K. Takizawa and T.E. Tezduyar, "Computational methods for parachute-structure interactions", Archives of Computational Methods in Engineering **19** (2012) 125–169. [2] T. Kanai and K. Takizawa, "Geometric-Porosity Modeling for Ribbon-Parachute Compressible Flow", (2015) 17–18.

Acknowledgement This research project was conducted as part of the 2016 Nakatani RIES Fellowship for Japanese Students with support from the Nakatani Foundation. For more information on the Nakatani program, see http://nakatani-ries.rice.edu/.

 \circ For M = 0.3-0.7, parachute diameter is almost constant with M

Improve the stability performance of the parachute