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Background Porosity Model for Compressible-Flow Results from Structural Mechanics Computations
- Orion Drogue Parachute Computations Apply symmetrized pressure difference
o 1 Estimate mass flow rate across the membranel2!. from fluid mechanics computations to

structural mechanics computations.
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. o Method for calculating the FSI starting condition
and the airflow.

o For M =0.3-0.7, parachute diameter is almost constant with M

Computational analysis
IS expected to serve as a practical alternative.
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o Vary the altitude

: : B T 9= o Start FSI analysis
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o To improve parachute performance, including stability T T T o Improve the stability performance of the parachute
o To obtain the parachute shape and flow field for fluid—structure - Symmetrize Cross-Membrane Pressure Difference
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