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Fluid and Structural Mechanics Analysis of the Orion Spacecraft 

Drogue Parachute in Compressible-Flow Regime

Objective
o To improve parachute performance, including stability 

o To obtain the parachute shape and flow field for fluid–structure 

interaction (FSI) [1] of NASA's Orion spacecraft parachute

Method/Conditions

Porosity Model for Compressible-Flow 

Computations
Estimate mass flow rate across the membrane[2].

Generate Mesh

Results from Fluid Mechanics Computations

Results from Structural Mechanics Computations

Figure: Orion parachute sequence From NASA site

Drogue parachute

in compressible-flow regime

Main parachute

in incompressible-flow regime

Background
- Orion Drogue Parachute

Figure: A drop test From NASA site

Cost is about a million dollar for 

each test.

Figure: A wind-tunnel test From NASA site

Scaling challenge due to coupling 

between the canopy deformation 

and the airflow.

- Field Tests

Computational analysis

is expected to serve as a practical alternative.

Future Directions
o Vary the altitude

o Start FSI analysis

o Improve the stability performance of the parachute

Concluding Remarks
o Method for calculating the FSI starting condition

o For M = 0.3–0.7, parachute diameter is almost constant with M
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Figure: Fluid-volume meshFigure: Fluid-interface mesh (left) 

and structural mechanics mesh (right)

M = 0.3 M = 0.5 M = 0.7

- Velocity Field at M = 0.3–0.7

- Governing Equations

Compressible Navier–Stokes equations

- Discretization and Stabilization Technique

Compressible-flow SUPG method

𝐷c
Construction diameter of   

the canopy 

𝐷p
Projected diameter of 

the inflated canopy

- Symmetrize Cross-Membrane Pressure Difference 

at M = 0.7

Figure: Parachute configuration

M = 0.3 M = 0.5 M = 0.7

Mach number M 0.3 0.5 0.7

Dynamic pressure (kPa) 1.50 4.17 8.17

Reynolds number Re (×107) 1.65 2.75 3.85

Altitude (ft) 35,000 

Table: Flight conditions

0.51 s

M (×106)

0.3
nn 1.01

ne 6.00

0.5
nn 0.92

ne 5.45

0.7
nn 0.90

ne 5.35
nn: Number of nodes

ne: Number of elements

Table: Mesh size

Figure: Parachute diameter 

Apply symmetrized pressure difference 

from fluid mechanics computations to 

structural mechanics computations.


