Isogeometric Discretization of Branched Artery Models

for FSI Computations

Ayaka Yoshida,^{1,2} Takafumi Sasaki,¹ Kenji Takizawa^{1,3}, Tayfun E. Tezduyar³

Contact: Ayaka. Yoshida@tafsm.org

¹Department of Modern Mechanical Engineering, Waseda University, Shinjuku, Tokyo, Japan. ²Nakatani RIES: Research & International Experiences for Students, Rice University, Houston, Texas, U.S.A. ³Department of Mechanical Engineering, Rice University, Houston, Texas, U.S.A.

Introduction

Objective

Generate mesh for branched artery models for fluid-structure interaction (FSI) computations.

Why FSI?

- Blood flow and arterial-wall motion need to be determined for diagnosis.
- The two are coupled and need to be solved simultaneously.

Why isogeometric discretization?

- Higher accuracy in surface model and in solid and fluid mechanics solutions.

Merit

- Elucidate pathology of vascular disease in the view of dynamic factors.

Methods and Results

Extract arterial inner surface

Patient-specific aortic inner surface model is extracted from medical images.

Thickness calculation

- At the inlet and outlet, based on the average diameter, calculate the wall thickness.
- Using the Poisson's equation, calculate the thickness elsewhere.

Build outer surface based on thickness and normal vector

× Crossing normal vectors in high-curvature regions

Original mesh

- Inadequate divisions of elements
- Not uniform knots

Results

Application

Coronary artery

Conclusion

Built an algorithm for generating mesh for branched artery models.

Future work:

- Perform FSI computations and analyze characteristics of patient-specific aorta shapes.
- Apply it to multi-layer wall model.

References

[1] Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, "Computational Fluid–Structure Interaction: Methods and Applications", Wiley (2013)

[2]A. Cottrell, T. Hughes, Y. Bazilevs, "Isogeometric Analysis: Toward Integration of CAD and FEA", Wiley(2009)

Acknowledgement

This research was conducted as part of the 2016 Nakatani RIES Felloship for Japanese students with support from the Nakatani Foundation. For more information on the Nakatani program, see http://nakatani-ries.rice.edu/. Special thanks to Dr. Kono, Sarah Philips, Aki-san, Ogawa-san, Endo-san for their support and for making this program possible, and Sasaki-san, Dr. Takizawa, and Dr. Tezduyar for their guidance.