ARPES Investigation of Pseudogap in Bi2212

W. Funkenbusch^{1,2}, R. Sobota³, and T. Takeuchi³

¹Chemical Engineering Department, University of Rochester, Rochester, NY, USA
²Nakatani Research and International Experience for Students Fellowship in Japan, Rice
University, Houston, TX, USA

³Energy Materials Laboratory, Toyota Technological Institute, Toyota, Japan

Cuprate superconductors are characterized by high critical temperatures exceeding liquid nitrogen temperature (77K), giving them a strong potential for industrial applications. However, a dip in the density of electronic states near the Fermi energy, named the pseudogap, was found to reduce the number of electrons contributing to the superconducting state, and, as a result, decrease the critical temperature. A better understanding of the pseudogap and superconducting states may allow the critical temperature of these superconductors to be further increased. The current study employed Angle-Resolved Photoemission Spectroscopy (ARPES) characterize superconducting gap and pseudogap of Bi₂Sr₂CaCu₂O_{8+δ} (Bi2212), a high critical temperature cuprate superconductor. A high-quality single crystal sample of optimally doped Bi2212 (Pb = 0.4, Y = 0.05) was prepared by the Traveling Solvent Floating Zone (TSFZ) technique. Its orientation and crystallinity were confirmed via X-Ray Diffraction (XRD). The sample's electron transport and thermodynamic properties (electrical resistivity, magnetic susceptibility, and Seebeck coefficient) were measured over a wide temperature range from 5 to 300 K. Finally, ARPES measurements were performed to investigate the energy-momentum dispersion of conduction electrons in close vicinity to the Fermi energy. These measurements allowed us to study the evolution of the pseudogap and superconducting gap as a function of temperature and Fermi vector on the 2D Fermi surface. Ultimately, it is hoped that this work will lead to a better understanding of cuprate superconductivity in the optimally doped regime.

Investigation of Pseudogap in High- T_c Cuprate Superconductors – Bi₂Sr₂CaCu₂O_{8+ δ}

William Funkenbusch, 1,2 R. Sobota, 3 and T. Takeuchi 3 ¹Chemical Engineering Department, University of Rochester, Rochester, NY, USA ²Nakatani Fellowship Program, Rice University, Houston, TX, USA ³Energy Materials Laboratory, Toyota Technological Institute, Toyota, Japan

Contact Information: wfunkenb@u.rochester.edu

Background and Purpose

Superconductivity:

Zero DC electrical resistivity

below critical temperature (T_c)

Results in apparent gap (Δ) in electronic density of states

Pseudogap:

- Energy gap in electronic density of states found in cuprate superconductors above T_c (origin unknown)
- Competes with superconducting gap (decreases critical temperature)
- Suppress pseudogap -> increase T_c ?

C. Renner et al., Phys. Rev. Lett. 80, 149 (1998)

- Material— $Bi_2Sr_2Ca_1Cu_2O_{8+\delta}$ (Bi2212): **High** T_c Superconductor (~93K)
- Doped with Pb and Y to control hole concentration (affects pseudogap)
- This sample: $(Bi_{1.7}Pb_{0.4})(Ca_{0.95}Y_{0.05})Cu_2O_{8+\delta}$ (optimally doped)

Purpose:

Characterize pseudogap and superconducting gap of Bi2212 sample in optimally-doped (max- T_c) regime in order to gain a better understanding of superconductivity in cuprates, with the hope of ultimately raising the T_c of these materials further

Experimental Procedure

- 1. Dry, mix, and decarboxylate (700 °C, 24 hours) raw materials (Bi₂O₃, PbO, SrCO₃, CaCO₃, Y₂O₃, CuO)
- 2. Grind and heat for solid state reaction (72 hours)
- 3. Take XRD and check the present phases
- 4. If purity is not high enough, repeat 2 and 3 at a higher temperature
- 5. Grow single crystal in Traveling Solvent Floating Zone Furnace (TSFZF)
- 6. Analyze sample with XRD, PPMS, and **ARPES**

Results and Discussion

284°

193°

(115) Peak

 Powder XRD shows only desired (Bi2212) peaks after heating to 865 °C, suggesting a high purity powder

Rietveld Analysis of Single Crystal XRD

- Single crystal XRD demonstrates high crystallinity and Rietveld analysis displays pure Bi2212 phase, with $R^2 = 4.4$ ($R_{wp} = 21.7$, $R_{exp} = 10.0$)
- Phi scan shows sharp peaks with 4-fold symmetry (90° separation) => prepared sample has **single** crystal qualities

Resistivity Piece 1, R(300K) = 0.173 Ohms Piece 2, R(300K) = 0.066 Ohms Different behaviors in electron scattering Temperature (K) Magnetic Susceptibility (H = 18 Oe)

✓ High critical temperature (~97 K)

- Resistivity, Seebeck Coefficient, and Magnetic Susceptbility measurements show superconducting character at same, high temperature, suggesting optimal doping (target)
- T_c (onset) = ~104 K
- T_c (downset) = **~97** K

ARPES – Sample Alignment: Laue Diffraction Laue Diffraction was used to align the sample for **ARPES** ARPES measurement Holder

ARPES – Measurement (Xe discharged plasma lump, 8.47 eV):

- Unfortunately, **no dispersion pattern** observed (300 K)
- Reason unknown

Conclusions

- A high-quality single crystal sample of Bi2212 in the optimally-doped regime was successfully obtained
- An energy-momentum dispersion pattern was unable to be identified using ARPES for unknown reasons

Future Work

- Look for dispersion pattern in current sample or samples with the same doping condition
- Study samples with different doping conditions
- Use ARPES to learn about the relationship between hole concentration and pseudogap characteristics
- Vary parameters to possibly suppress pseudogap

Acknowledgements

- 2017 Nakatani Foundation (http://nakatani-ries.rice.edu/)
- Professor Takeuchi, Dr. Sobota, and the rest of the Toyota Technological Institute Energy Materials Lab
- Ogawa-san, Endo-san, Sarah, and my fellow 2017 U.S. and Japanese Fellows