ARPES Investigation of Pseudogap in Bi2212

W. Funkenbusch1,2, R. Sobota3, and T. Takeuchi3

1Chemical Engineering Department, University of Rochester, Rochester, NY, USA
2Nakatani Research and International Experience for Students Fellowship in Japan, Rice University, Houston, TX, USA
3Energy Materials Laboratory, Toyota Technological Institute, Toyota, Japan

Cuprate superconductors are characterized by high critical temperatures exceeding liquid nitrogen temperature (77K), giving them a strong potential for industrial applications. However, a dip in the density of electronic states near the Fermi energy, named the pseudogap, was found to reduce the number of electrons contributing to the superconducting state, and, as a result, decrease the critical temperature. A better understanding of the pseudogap and superconducting states may allow the critical temperature of these superconductors to be further increased. The current study employed Angle-Resolved Photoemission Spectroscopy (ARPES) to characterize the superconducting gap and pseudogap of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212), a high critical temperature cuprate superconductor. A high-quality single crystal sample of optimally doped Bi2212 (Pb = 0.4, Y = 0.05) was prepared by the Traveling Solvent Floating Zone (TSFZ) technique. Its orientation and crystallinity were confirmed via X-Ray Diffraction (XRD). The sample’s electron transport and thermodynamic properties (electrical resistivity, magnetic susceptibility, and Seebeck coefficient) were measured over a wide temperature range from 5 to 300 K. Finally, ARPES measurements were performed to investigate the energy-momentum dispersion of conduction electrons in close vicinity to the Fermi energy. These measurements allowed us to study the evolution of the pseudogap and superconducting gap as a function of temperature and Fermi vector on the 2D Fermi surface. Ultimately, it is hoped that this work will lead to a better understanding of cuprate superconductivity in the optimally doped regime.
Investigation of Pseudogap in High-T_c Cuprate Superconductors – Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

William Funkenbusch,1,2 R. Sobota,3 and T. Takeuchi3

1Chemical Engineering Department, University of Rochester, Rochester, NY, USA
2Nakatani Fellowship Program, Rice University, Houston, TX, USA
3Energy Materials Laboratory, Toyota Technological Institute, Toyota, Japan

Contact Information: wfunknb@u.rochester.edu

Background and Purpose

Superconductivity:

- Normal Metal
- Superconductor
- Phonons
- Neutral defects
- Resistivity
- Transition temperature (T_c)

Pseudogap:

- Results in apparent gap (Δ) in electronic density of states
- Energy gap in electronic density of states found in cuprate superconductors above T_c (origin unknown)
- Competes with superconducting gap (decreases critical temperature)
- Suppress pseudogap \Rightarrow increase T_c

Material—Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212):

- High T_c Superconductor (~93K)
- Doped with Pb and Y to control hole concentration (affects pseudogap)
- This sample: (Bi$_{1-x}$Pb$_x$)$_2$(Ca$_{0.65}$Y$_{0.35}$)Cu$_2$O$_{8+\delta}$ (optimally doped)

Purpose:

Characterize pseudogap and superconducting gap of Bi2212 sample in optimally-doped regime in order to gain a better understanding of superconductivity in cuprates, with the hope of ultimately raising the T_c of these materials further.

Experimental Procedure

1. Dry, mix, and decarbonate (700 °C, 24 hours) raw materials (Bi$_2$O$_3$, PbO, SrCO$_3$, CaCO$_3$, CuO).
2. Grind and heat for solid state reaction (72 hours).
3. Take XRD and check the present phases.
4. If purity is not high enough, repeat 2 and 3 at a higher temperature.
5. Grow single crystal in Traveling Solvent Floating Zone Furnace (TSFZF).
6. Analyze sample with XRD, PPMS, and ARPES.

Results and Discussion

Powder XRD

- Recovered Bi2212 phase after 865 °C heating.

Rietveld Analysis of Single Crystal XRD

- Single crystal shows high crystallinity and pure Bi2212 phase.

Magnetic Susceptibility

- Peak maximum \Rightarrow presence of pseudogap.

Resistivity

- Optimal doping
- High critical temperature (~97 K)

Seebeck Coefficient

- High temperature (~101 K) \Rightarrow presence of pseudogap.

Future Work

- Look for dispersion pattern in current sample or samples with the same doping condition.
- Study samples with different doping conditions.
- Use ARPES to learn about the relationship between hole concentration and pseudogap characteristics.
- Vary parameters to possibly suppress pseudogap.

Acknowledgements

- 2017 Nakatani Foundation (http://nakatani-ries.rice.edu/)
- Professor Takeuchi, Dr. Sobota, and the rest of the Toyota Technological Institute Energy Materials Lab