Design of Microwave Antenna for Orbital Angular Momentum Transfer Research Using Electron Spins in Diamond

Rose Huang,^{1,2,3} Kento Sasaki,³ Eisuke Abe,³ Yasuaki Monnai,³ and Kohei M. Itoh³

Nitrogen vacancy (NV) defects in diamond have promising applications in quantum information processing and quantum sensing. Electrons of a NV center form a spin-1 system, and can be excited from $m_s = 0$ to $m_s = \pm 1$ using circularly polarized microwaves. We can readout the final spin state with photoluminescence (ODMR: optically detected magnetic resonance). The transfer of orbital angular momentum to spin angular momentum in a NV center will enable larger transitions between spin states. We report on a microwave antenna that generates a twisted magnetic field. The design consists of 8 copper loops on a square FR-4 substrate with a layer of copper behind it. There is a linear phase delay between each excitation port attached to the end of the copper loops. Simulated on CST MICROWAVE STUDIO[®], this antenna emits 2 GHz twisted microwave with a 4π rotation. We expect that the antenna will excite electrons from $m_s = -1$ to $m_s = +1$ for a (111)-oriented diamond. The excitation of the NV center will be assessed with twisted microwave light by an ODMR setup. The electrons of the NV center will be excited from $m_s = 0$ to $m_s = -1$ with linearly polarized microwaves, and then further excited from $m_s = -1$ to $m_s = +1$ using the twisted light microwave antenna. This additional transition between the NV spin states will allow for increased sensitivity in NV-based sensors.

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, U.S.A.

²Nakatani RIES: Research and International Experience for Students Fellowship in Japan, Rice University, Houston, Texas, U.S.A.

³School of Fundamental Science and Technology, Keio University, Yokohama, Japan

Design of Microwave Antenna for Orbital Angular Momentum Transfer Research Using Electron Spins in Diamond

Rose Huang, 1,2,3 Kento Sasaki, Eisuke Abe, Yasuaki Monnai, and Kohei M. Itoh

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, U.S.A. ²Nakatani RIES: Research and International Experiences for Students Fellowship in Japan, Rice University, Houston, Texas, U.S.A. ³School of Fundamental Science and Technology, Keio University, Yokohama, Japan

Introduction

Nitrogen Vacancy (NV) defect in diamond

- Control of NV spin allows for applications in quantum information processing and quantum sensing^{1,2}
- S=1 system
- Spin-dependent photo luminescence¹
- Spin initialization
- Long coherence time at room temperature¹

Spin State Transitions in NV Centers

Can currently excite electrons of NV center from $m_S = 0$ to $m_S = -1$ or $m_S = +1$ using circularly polarized light³

 Transfer of orbital angular momentum will enable larger transitions between spin states

Antenna Design

- Square FR-4 substrate (50 mm x 50 mm)
- Copper layer behind substrate
- 8 copper loops
- 2 copper strips connected by thin copper wire
- 8 excitation ports with linear phase delay between ports to create 4π rotation

S-Parameter Measurement

- Network analyzer result around 2 GHz frequency
- S_{11} is around -9 dB (transmission 87%)

Measurement Setup

Optically Detected Magnetic Resonance (ODMR) for initialization, control, and readout

- 515 nm green laser excites electrons in NV center
- Red photons emitted by NV center counted by avalanche photodiode (APD)
- Pulses of sinusoidal magnetic field B_{ac} from signal generator transmit through amplifier and splitter to the antenna

Diamond Sample

- 50 µm thick (111)-oriented diamond
- Mapping near the center of sample with measured NV center circled

ODMR Measurement

- Magnetic field aligned to 111 direction
- Resonant frequency difference is 1992 MHz

Summary and Future Work

Summary

- Designed antenna and implemented setup for generating microwave field vortex
- Antenna generated microwave signal that can excite NV center from $|0\rangle$ to $|-1\rangle$
- $|-1\rangle$ to $|+1\rangle$ transition could not be observed

Future Work

- Confirm antenna magnetic field vortex generation
- Input stronger microwave power to generate stronger magnetic field

References

- ¹L. Childress, R. Walsworth, and M. Lukin, Phys. Today **67**, 38 (2014).
- ²J. M. Taylor, et al., Nat. Phys. **4**, 810 (2008)
- ³J. Herrmann, et al., Appl. Phys. Lett. **109**, 183111 (2016).

Acknowledgements

This research project was conducted as part of the 2017 Nakatani RIES Fellowship for U.S. Students with funding from the Nakatani Foundation. For more information, see http://nakatani-ries.rice.edu/. I would like to thank Sasaki-san, Abe-sensei, Monnai-sensei, and Itoh-sensei for their help with this research project. Additional thanks to Professor Stanton, Kono-sensei, Sarah Phillips, Ogawa-san, and Endo-san for their support and guidance in making this program possible.

