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Monolayer transition metal dichalcogenides (TMDCs) have shown exceptional promise 
as valleytronic materials. Their strongly coupled spin-valley physics allow selective 
valley population using circularly polarized light. Understanding the physical 
mechanisms behind valley relaxation (loss of binary valley information) in these 
materials is an important, ongoing research topic. We have accumulated experimental 
evidence for a comprehensive theory [1] of two-dimensional screened, electron-hole 
exchange-interaction-mediated valley relaxation processes in TMDCs [2]. Our results can 
also explain temperature-dependent and excitation-density-dependent valley relaxation 
phenomena in a variety of previous studies. According to our theory, valley relaxation 
times should show strong dependence on exciton homogeneous linewidth. Through 
changing excitation density with a pulsed laser, we recently showed an inverse 
relationship between steady-state valley polarization and exciton homogeneous linewidth 
at low temperature, consistent with our theory. We also showcase recent efforts to 
enhance valley physics by encapsulating TMDCs in thin layers of hexagonal boron 
nitride (hBN). This is a common practice for enhancing the optical and electronic 
properties of graphene, but has been only recently been utilized for TMDCs. We 
demonstrate the effects of hBN encapsulation on improving low-temperature excitonic 
spectra of monolayer MoS2, and report on how this affects valley relaxation physics 
within the context of our current theoretical understanding. Our results help gain insight 
into the fundamental valley physics of monolayer TMDCs, a class of exciting 
valleytronic materials. 
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• Previous work [4-5]: long-range electron-hole exchange interactions induce fast valley relaxation.
• Screening effects from carrier dopants critically affect this process [5].
• Model exciton valley scattering as Maille-Silva-Sham depolarization of  valley pseudospin [4-5]:

3. RESULTS: Monolayer WSe2
• Measure steady-state valley polarization, related to valley lifetime by:
•      is valley polarization;    ,   , and   are constants;       is exciton lifetime.
• Expect inverse relationship between valley polarization and linewidth.

• With increasing excitation power, linewidth broadens
   and valley polarization decreases.
• Plotting linewidth vs. valley polarization reveals an
   inverse relationship, as predicted by (2).

4. RESULTS: hBN-MoS2 sandwich
• hBN encapsulation common for graphene, but only recently used for TMDCs. [6]
• Observed very narrow PL spectrum with this technique.

• Excitation-power response of  linewidth
   matches response of  valley polarization.
• Results consistent with WSe2.

5. CONCLUSION
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•     is valley relaxation time.
•        is 2D Thomas-Fermi wave vector
  (screening effect).
•     is homogeneous line width.
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• Exciton linewidth inversely related to valley polarization in 2DTMDCs.
• Agrees with broader theory of  TMDC valley relaxation by carrier-
  screened, long-range electron-hole exchange interactions.
• Results suggest that narrowing exciton linewidth can help extend valley
  lifetimes and increase valley polarization.
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2. METHODS
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(1) • Low-temperature linewidth and valley lifetime
    iiihave a simple relationship [5]: 
• Plugging into (2) above, we do a simple fit for       .
• We obtain reasonable fits (       from 4-12 ps).
•     is a known constant (approx 0.7) from previous experiments.
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