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 Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMD) exhibit 
extraordinary physical properties similar to graphene with the distinctive feature of having an 
intrinsic bandgap, enabling their vast potential applications in ultrafast photonic devices and 
optoelectronics as semiconductors. The characterization of these materials is essential for 
developing such technologies and the emerging terahertz (THz) microscopy proves to be an ideal 
technique allowing contactless probing that reveal electrical properties of microscale structures. 
While the optical properties of 2D TMDs have been studied extensively, their properties with 
respect to near-field terahertz response are not yet as well-understood. The far-field, millimeter 
scale nature of standard terahertz techniques is suitable for measuring the response of bulk 
standard semiconductors, but a terahertz microscope further reveals the carrier dynamics of 
TMDs. In this study, we employ a unique, optical-pump terahertz-probe microscope to measure 
the response of both monolayer and bulk samples of TMD MoS2 and WSe2 deposited on LiNbO3 
crystal substrate. The thin-layer TMDs were fabricated using mechanical exfoliation, resulting in 
pure, high-quality single crystal samples that cannot be obtained with chemical vapor deposition 
methods. Using optical-pump THz-probe microscopy, we measure the decay lifetime of MoS2 
electron carriers with a temporal resolution of approximately five hundred femtoseconds in the 1 
THz range to be 8.74 picoseconds and show the THz electric field response of these thin TMDs. 
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Conclusions and Next Steps

• TMDs are transition metal atoms covalently bonded to chalcogens 
(S, Se, or Te) stacked in layers by weak van der Waals interactions.

• Transition metal dichalcogenides (TMD) are atomically thin materials 
like graphene that are distinguished by an intrinsic bandgap.

• Vast potential applications in ultrafast photonic devices and 
optoelectronics as semiconductors, including in solar cells.

Mechanical Exfoliation
• High-quality, single crystal MoS2

thin samples unobtainable with 
chemical vapor deposition (CVD)

• Deposited on LiNbO3 (LN) 
elemental crystal substrate.
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where semiconductors are currently too 
inefficient [4].

Terahertz probing enables unique access 
to investigating molecular interactions 
and free carrier dynamics and imaging
samples normally opaque to visible and 
near-IR wavelengths.

• Performed near-field optical-pump terahertz-probe imaging with 
clear evidence of TMD sample observed.

• Demonstrated THz microscopic imaging potential for non-invasive 
characterization of bulk and few-layer TMDs.

• Relaxation rate of carriers may be attributed to the edge state and 
the thickness given a particular positional point.

• Imaging heterostructure TMDs to observe free carrier migration for 
photovoltaic applications.

Atomic Force Microscopy (AFM)
• Determining thickness and smoothness of bulk sample.

Monolayer and Few-Layer MoS2 Bulk MoS2 Sample

19.5 cm-1 24.9 cm-1

[2]

• Layer thickness difference of ~510 nm observed between internal edges.
• Position 4, where an edge is located, was observed to have an especially 

rapid decay even when compared to the thinner region of Position 5.
• The likely combination of a thinner region and edge state may contribute to 

faster carrier relaxation in Position 3 [5].

Raman Spectroscopy Characterization
• Taking Raman spectra reveals the number of layers in a sample 

based on molecular vibrations and Raman modes. 

Pump pulse

"
Probe pulse

A. Optical image map of bulk MoS2 sample, positionally 
annotated with the corresponding decay rates shown in the 
ΔE vs. delay time plot below.

B. THz image taken at ~1 ps immediately following the radial 
interference fringes at 0 ps, where the probe and pump pulse 
occur simultaneously.

30.00 µm

• Unique setup allows TMDs to be 
imaged in near-field

• Peak of THz pulse (ETHz) is probed
• Captured differential signal (ΔETHz) 

between pump on and off
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• Fabricated bulk MoS2 with an indirect bandgap of 1.23 eV.

[1]

Non-destructive imaging
Spatial resolution    ~ 10 µm (λ/50)
Time resolution       ~ 100 fs
Pump source          ~ 780 nm (1.59 eV)
Imaging dimension ~250 × 250 µm
THz pulse generated from LN crystal

Terahertz pulse spot imaged without pump on 
reference LN substrate occurring at time delay of 0

-6.7 ps

Substrate

811 nm
298 nm

Position 5 (magenta) is shown in a reference location because the 
edge is not within the dimensions of the AFM image. 
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