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Valleytronics is an emerging field of electronics and optoelectronics that aims to store
information by manipulating the valley degree of freedom. Within this field, 2D transition
metal dichalcogenides (TMDCs) are attracting much attention due to their unique
properties that may aid in developing valleytronic devices. Currently, a major limitation of
valleytronics remains its short valley polarization lifetime, or the amount of time that
information can be stored ', Understanding the mechanism behind valley polarization is a
major step towards overcoming this hurdle. In this study, we applied an out-of-plane
electric field while changing carrier density as well as isolating the effect of the out-of-
plane electric field. Previous attempts at investigating valleys in TMDCs have dealt with
defect engineering, creation of heterostructures between two different TMDCs, and
application of an out-of-plane magnetic field [>3. However, the carrier density and electric
field effects have yet to be extensively studied experimentally, though theory has been
proposed 1. For testing both carrier density and electric field effects we used a WSe:
monolayer placed between hBN and graphene on gold. To isolate the electric field effect,
we used another device where we completely encapsulated a WSe, monolayer with hBN
on gold, using graphene again to connect the electrodes. Optical measurements were
carried out at low temperatures, as it has been reported that valley polarization is more
pronounced Pl. We will report on the results of this experiment and its repercussions. Our
research is an important step towards laying a foundation for realizing modern valleytronic
applications.
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