
Introduction
• Diabetic ketoacidosis (DKA) is a life-threating 

complication for children with Type 1 diabetes.
• More than 12,700 pediatric patients are diagnosed 

annually with DKA in the United States (with 2417 
deaths in 2009), and are treated at a cost of over $90 
million. 

• Known risk factors for DKA include female gender, 
low socioeconomic status, ethnic minorities, and 
elevated A1C levels. 

• In this research, we aim to use EHR data from Texas 
Children’s hospital on Type 1 pediatric patients to 
build a comprehensive set of risk factors for 
accurately identifying patients at increased risk of  
DKA.

• By pro-actively identifying patients at high risk for 
DKA, we hope to intervene early to prevent DKA in 
Type 1 diabetic patients.

Results Discussion
• B-Hydroxybutyrate tests are administered when 

doctors suspect a patient has DKA, so the values 
might not be useful in a predictive context.

• Patient’s demographic information, onset age, A1C 
test values and C-peptide test values are the 
important discriminators.

• We showed that C-peptide test values are especially 
informative. C-peptide tests indirectly inform us of 
the levels of insulin produced in the body.

• Our work could assist physicians assess the risk of 
DKA in a patient (i.e., the probability of being in 
Cohort 1 or 2) and adjust therapeutic interventions 
appropriately, to reduce DKAs overall. 

• The overall predictive AUC without B-
Hydroxybutyrate reduces to 0.74 (from 0.88).  We 
are working to improve this in our future analyses.

• These models have a limitation because they take in 
the overall lab data from 1st year after onset. It 
might not predict DKAs in the 1st year. 
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Methods
1. From the data provided by the Texas Children’s 

Hospital, extract data about Type1 patients (total 

number of type1 patients = 4833).
• Demographic data ( Zip code, ethnicity etc.)
• Lab data(A1C test, B-Hydroxybutyrate, C-

peptide tests) 
2. Separate the patients into 2 cohorts.

• Cohort 1: Type 1 patients who have never had 
DKA, or no DKA after diagnosis. (3327)

• Cohort 2: Type 1 patients who have had one or 
more DKAs after diagnosis. (1507)

3. Clean the data by omitting incomplete data and 
standardizing units for Lab data.

4. Create several sets of data that include different 
features for Cohort 1 and 2.

• Demographics for cohort 1 and cohort 2
• Lab data for cohort 1 and cohort 2
• Demographics and Lab data for cohort 1 and 2

5. Use several classifiers and train each model with 
different data sets (in 5-fold CV).

• Naïve Bayes
• Logistic Regression (L1 and L2)
• Random Forest Classifier

6. Evaluate the predictive accuracy of each classifier and 
also find the most important features for class 
separation. 

Demographics A1C tests B-Hydroxybutyrate
tests

C-peptide tests Demographics + 
A1C + Β-Hydro + 
C-pep tests  

Demographics + 
A1C tests +  C-
peptide tests

Naïve Bayes 0.62 0.63 0.81 0.62 0.84 0.69

Logistic L2 
Regression

0.62 0.64 0.82 0.72 0.89 0.72

Logistic L1
Regression

0.62 0.64 0.82 0.72 0.89 0.74

Random Forest 
Classifier (10 trees)

0.54 0.57 0.77 0.67 0.87 0.70

Random Forest 
Classifier (50 trees)

0.55 0.59 0.78 0.67 0.88 0.74

AUC values for different combinations of features and classifiers

t- SNE plots (Blue: Cohort1, Orange: Cohort 2)

Demographics

Β – Hydroxybutyrate test C-Peptide test

Demographics + A1C +  B-Hydro + C-pep tests

Demographics + A1C +C-pep test

A1C test

Information on B-Hydroxybutyrate and C-peptide appears to separate the two cohorts 
effectively. Here, we can tell that Demographics, A1C test, B-Hydroxybutyrate test, and C-
peptide test values are optimal sets of information to be used for classification.

AUC values are indicators of how predictive the classifiers are. We can see that classifiers 
using information on all available features: Demographics, A1C test, B-Hydroxybutyrate
test, C-peptide test, perform the best across all algorithms. In this case, the best models 
are L1 Logistic Regression and Random forests.  

Future Work
• Train the classifiers with a larger number of patients. 

Some patients did not have complete data, which 
reduced the actual number used for training the 
models presented here.

• Add more features to the models. There is a lot of 
information about patients that we have not yet used 
–information on clinic encounters, pharmacy refills, 
visits to other units (co-morbidities), results from 
many more diabetes tests and panels. 

• We have time series data on the lab values, so 
algorithms that take time index into account are an 
important next step in our analysis.

Feature importance (Random Forest) Coefficients (Logistic L1 Regression) Coefficients (Logistic L2 Regression)
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